算法分析基础

13 篇文章 0 订阅

看了第二章之后,发现算法和数学关系挺大的,很多的都要公式推导。公式明天慢慢用语法进行修改。

一、渐近上界记号 O

如果存在正常数 c 和自然数 n0,使得当 n≥n0 时有 f(n) ≤ cg(n),则称函数 f(n) 当 n 充分大时有上界,且 g(n) 是它的一个上界,记做 f(n)=O(g(n)) 。即 f(n) 的阶不高于 g(n) 的阶。

  • 定理2-1

    这里写图片描述

  • 定理 2-2:如果 n>m ,则 n%m < n/2 。

二、渐近下界记号 Ω

如果存在正常数 c 和自然数 n0,使得当 n≥n0 时有 f(n) ≥cg(n) ,则称函数 f(n) 当 n 充分大时有下界,且 g(n) 是它的一个下界,记做 f(n)=Ω(g(n)) 。即 f(n) 的阶不低于 g(n) 的阶。

这里写图片描述

  • 定理2-3

这里写图片描述

三、紧渐近界记号 θ

如果存在正常数 c1,c2 和 n0,使得当 n≥ n0 时有 c1g(n)≤f(n)≤ c2g(n),则称函数 f(n) 与函数 g(n) 同阶,记做 f(n)=θ(g(n))。即 f(n) 与 g(n) 的增长阶数相同。

这里写图片描述

  • 定理2-4

这里写图片描述

四、非紧上界记号 o

如果对于任何正常数 c > 0 都存在正整数 n0 > 0,使得当 n ≥ n0 时有 f(n)<cg(n) (等价于:n→∞时,f(n) / g(n) →0),则称函数 f(n) 当 n 充分大时的阶比 g(n) 低,记做 f(n) = o(g(n))。

五、非紧下界记号 w

如果对于任何正常数 c > 0 都存在正整数 n0 > 0,使得当 n ≥ n0 时有 f(n)>cg(n) (等价于:n→∞时,f(n) / g(n) →∞),则称函数 f(n) 当 n 充分大时的阶比 g(n) 高,记做 f(n)=w(g(n))。

渐近分析中函数比较

这里写图片描述

思考题:证明O(f(n))+O(g(n)) = O(max{f(n),g(n)})

这里写图片描述

算法按时间复杂度分类

这里写图片描述

附录:渐近分析记号的若干性质

(1)传递性:

这里写图片描述

(2)反身性:

这里写图片描述

(3)对称性:

这里写图片描述

(4)互对称性:

这里写图片描述

(5)算术运算:

这里写图片描述

附录:算法渐近复杂性分析中常用函数

取整函数

这里写图片描述

指数函数( 对于正整数m,n和实数a>0)

这里写图片描述

对数函数

这里写图片描述

这里写图片描述

这里写图片描述

阶乘函数

这里写图片描述

版权声明:本文为博主原创文章,如有错误,恳请大家在评论区指出,在下不胜感激~如要转载注明出处即可~

  • 0
    点赞
  • 0
    评论
  • 3
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 像素格子 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值